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Abstract

The notion of optimality is often invoked informally in the literature on metacognitive control. We

provide a precise formulation of the optimization problem and show that optimal time allocation

strategies depend critically on certain characteristics of the learning environment, such as the

extent of time pressure, and the nature of the uptake function. When the learning curve is concave,

optimality requires that items at lower levels of initial competence be allocated greater time. On

the other hand, with logistic learning curves, optimal allocations vary with time availability in

complex and surprising ways. Hence there are conditions under which optimal strategies will be

intuitive and easy to learn, and others in which they will be considerably more complicated. The

model can therefore be used to address the question of whether and when learners should be able

to exercise good metacognitive control in practice.
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1 Introduction

One of the more important and frequent resource allocation problems faced by decision makers in

daily life is the allocation of time across competing activities or tasks. An important example of this

arises when, in the process of study, learners are confronted with the problem of deciding how to

allocate time to a variety of items. This requires that the learner make ongoing judgments regarding

the extent to which individual items have been learned and, based on these judgments, to control

subsequent allocations of time. These two components–monitoring and control–constitute the

general framework of metacognition (Nelson and Narens, 1990, 1994). The processes of monitoring

and control result in the allocation of study time, spacing decisions, testing decisions, in addition

to other strategies of study. In this paper, we focus on the metacognitive control of time allocation.

There are a number of plausible ways in which a given amount of available time can be allocated

to a set of to-be-learned items. For instance, one might spend most time on those items that are

judged to be the most difficult or furthest away from a learned state (Dunlosky and Hertzog, 1998).

Alternatively, time may be allocated disproportionately to items of intermediate difficulty, with

more challenging items receiving attention only when time pressure is not binding (Metcalfe, 2002).

In these and other related theories, the idea of optimality has often been invoked, but without the

development of a rigorous model of optimizing behavior. This is the gap in the literature that we

seek to fill.

One of the advantages of an explicit model of optimal time allocation is that it makes transparent

the manner in which allocations depend on structural characteristics of the learning environment,

such as the general shape of the learning curve. Without a precise formulation of the problem faced

by the learner, and a detailed characterization of optimal behavior, it is impossible to address the

question of the effectiveness of study strategies. For instance, speaking of the individuals in their

series of experiments, Metcalfe and Kornell (2005, p. 476) write:

“We still do not know whether what they do enhances their learning, or is in any way

optimal. Until we have answered the still-open question of efficacy, despite the subtlety

of people’s strategies and their adherence to the predictions of the model, we cannot

fully endorse the idea that they are exerting good metacognitive control.”

Such questions of efficacy can only be addressed once formal optimizing models of the kind developed

here have been explored.

Whether or not a particular time allocation strategy is optimal will depend on two key aspects of

the learning environment. One is the shape of the learning curve or uptake function, which describes

how investments of time result in increases in competence. The other is the set of goals or objectives
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of the learner. Two different types of learning curves are considered here. In the case of diminishing

returns, the slope of the learning curve decreases continuously as higher levels of competence are

attained. Hence investments of time raise competence most sharply at low levels of competence.

Alternatively, one might have S-shaped or logistic learning curves which have increasing slopes at

the lowest levels of initial competence but decreasing slopes once learning has proceeded beyond

some level. For certain learner objectives, the qualitative properties of the optimal allocation are

highly sensitive to the general shape of the learning curve. Under diminishing returns optimality

requires that the items that are initially least well learned receive the greatest time allocations.

This is regardless of the extent of time pressure. With logistic learning curves, on the other hand,

a smaller and easier set of items are studied under high time pressure. Successively more difficult

items receive attention as time pressure eases. A key finding is that with logistic learning curves,

optimal allocations vary with time pressure in a manner that is discontinuous and non-monotonic.

There now exists a considerable body of evidence dealing with time allocation strategies, as

well as theories of metacognitive control. We examine below the extent to which observed learning

behavior, and the theoretical models that have been developed to explain it, are consistent with

optimal time allocation. Moreover, while the focus of this paper is on the allocation of time across

competing activities, the approach taken here can be applied to other settings. The general question

of the efficacy of learning processes in furthering individual goals is of broad interest, and formal

models of optimization provide a framework within which such questions of efficacy can be fruitfully

addressed.

2 A Model of Time Allocation

When learning, an individual is confronted with a set of items, and has a specific amount of total

time to allocate to their study. At the outset each item will be at some initial level of learning, which

we can identify with a point on the item’s learning curve. This is a function which describes the

manner in which investments of time result in increased competence. What might these functions

look like? Since the level of competence that can be attained in any given task is bounded, learning

curves must eventually plateau. This leaves two plausible types of learning curve, as shown in

Figure 1. The curve on the left represents learning under conditions of diminishing returns, where

the slope of the curve is steepest at the outset, and flattens as learning progresses. That on the

right represents learning that is slow at the outset, increases most rapidly at intermediate levels of

time investment, and eventually plateaus. The points A and B represent initial and final levels of

learning, based on some allocation of study time.
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Figure 1. Examples of Learning Curves

Learning curves with diminishing returns are consistent with exponential, hyperbolic, square-

root, and power functions, and have been commonly been found in a wide variety of laboratory

situations (see for instance, Anderson and Schooler, 1991, for the case of practice effects). Many

have argued, however, that the time scale on which laboratory learning occurs is too short to

capture the relevant uptake functions in everyday learning. Newell, Liu, & Mayer-Kress (2001, p.

59), for instance, note that the "number of practice trials or the duration of the practice period

for the assessment of learning curves has been ... quite limited in relation to the realities of the

performance of every day activities." It is conceivable, therefore, that laboratory learning curves in

fact capture only the upper portion of an S-shaped learning curve, which more accurately describes

learning over a longer time scale (Fischer and Pipp, 1984). Such S-shaped learning curves are

predicted by the theoretical models of Hull (1943), Klopf (1988), van Geert (1991) and Newell et

al. (2001).

In general, S-shaped uptake functions are plausible for the learning of complex skills. Empir-

ical evidence for such functions have been found in language acquisition (Rice, Wexler, & Hersh-

berger, 1998), sequence learning (Noble, 1957), motor learning (Newell et al., 2001), and condi-

tioning (Klopf, 1988). For example, when investigating the learning of tenses in both normal and

language-impaired children, "inspection of the individual curves shows slow growth at the begin-

ning... followed by rapid acceleration, and then a final period of leveling off" (Rice et al., 1998, p.

1425). Noble (1957) reports results for sequence learning which show curves that are "skewed and

S-shaped" (p.247). And Frey and Sears (1978) observe that acquisition curves in conditioning "are

typically S-shaped, with a period of positive acceleration followed by one of negative acceleration"

(p. 324).

Given a particular set of to-be-learned items, each with its own learning curve, how should
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the total available time be allocated in order to best meet the learner’s objectives? Let n denote

the total number of items to be learned, and T the time available to be allocated. Prior to the

allocation of any study time, each of the items will be at some initial level of learning. Let ai denote

this initial level of competence for each item i, where i = 1, 2, ..., n. This level of competence is the

outcome of some prior time allocation si to the study of the item. In this case, ai = fi(si), where

fi is the uptake function or learning curve for item i. Note that we allow for different items to have

different learning curves.

Suppose an item is at a point A on its learning curve (as in Figure 1), where the coordinates

of A are (si, ai). Now let ti denote the amount of additional time allocated to the item. This takes

item i to some point B on its learning curve, where the coordinates of B are (si + ti, bi), and

bi = fi(si + ti). If no time is left unallocated, we must have

T =
nX
i=1

ti.

The total available time T identifies a range of feasible time allocations (t1, ..., tn) among which the

learner can choose. Each such choice results in some distribution of final competences (b1, ..., bn),

where bi is the final competence attained for item i.

The optimal allocation of time across items will depend both on the shapes of the learning

curves, and on how various distributions of final competence are valued by the learner. To allow

for the possibility that some items are more highly valued than others, we assume that the learner

wishes to maximize a weighted average of competences
Pn
i=1wibi. Here the weight wi measures the

importance to the decision maker of achieving a high level of performance in task i. If all tasks are

considered to be equally important, then we have the special case
Pn
i=1 bi. Here the decision maker

simply wants to maximize her aggregate score. Note that there are plausible learner objectives

which are not explicitly considered here (for instance, learners might care about the minimum

competence across all items, the maximum competence of any one item, or the number of items

above some specified threshold.)

Items may receive greater weight for a variety of reasons including the extent to which the

learner finds them intrinsically pleasant or unpleasant. Such motivations may be very important:

judgments of interest have been shown to be positively correlated with investments of time (Son

& Metcalfe, 2000). Alternatively, in experimental settings, the weight placed on an item might

be manipulated by the experimenter. For instance, Dunlosky and Thiede (1998) achieve this by

assigning 10 points for learning some items and 1 point for learning others (see also Le Ny, Denhiere,

& Le Taillanter, 1972). Unfortunately instructions given in most experiments are too vague for an

observer to make precise inferences about learner objectives.
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For any given valuation, optimal behavior will depend on the shape of the uptake function. We

consider first the case of diminishing returns, and then examine logistic learning curves.

3 Diminishing Returns

Suppose that the learning curve for all items are increasing, so the first derivative f 0i > 0 for all i.

Suppose further that the curves are concave, so the second derivative f 00i < 0. This is the case of

diminishing returns. We now show how optimal allocations vary with total available time in the

special case of two items with equal value and identical learning curves. We then consider the more

general case of multiple items with varying values and different learning curves.
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Figure 2. Diminishing Returns with Two Items

Suppose that each of two items has the same value (w1 = w2) and uptake function (f1 = f2), and

that the initial competences for the items are a1 and a2 respectively, with a2 > a1 (see Figure 2).

Corresponding to these initial competences are the historical times s1 and s2, such that ai = f(si).

When learners wish to maximize the sum of competences, standard results from the theory of

classical optimization (see, for instance, Intriligator, 1971) imply that if both items are allocated

positive amounts of time, then

f 0(s1 + t1) = f 0(s2 + t2). (1)

6



In other words, the marginal returns to time allocated must be equalized across the two items. This

makes sense: if it were not the case that condition (1) were satisfied, then the decision maker could

raise the sum of competences by shifting time away from the item with the lower marginal return

and towards the item with the higher marginal return. Since no such profitable reallocations can be

possible at an optimal allocation, marginal returns must be equalized across items. Furthermore,

since f 00 < 0 at all points on the learning curve, condition (1) can only be satisfied if s1+t1 = s2+t2,

and hence b1 = b2. That is, if both items receive positive time allocations, then they must be brought

to the same point on the common learning curve, as in Figure 2. Hence the optimizing decision

maker should equalize levels of final competence across items, and devote most resources to those

items initially at the lowest levels of competence.

What if there is insufficient time available to achieve the equality of slopes required by condition

(1)? If total available time T is less than s2 − s1, the optimal allocation requires that all time be

devoted to the initially less well learned item. This follows from the fact that the marginal returns

are higher at lower levels of initial competence. Figure 3 describes how optimal allocations vary for

a range of values of T . When total available time is scarce, only item 1 is studied, but once T is

sufficiently large, both items receive attention in such a manner as to maintain equality of slopes

and equality of final competence.
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Figure 3. Optimal Allocations under Diminishing Returns (a1 = 0.20, a2 = 0.38)
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These qualitative results generalize to the case of multiple items. When time is scarce, the items

that receive positive attention will be those initially at the lowest levels of learning, and any subset

of items that receives positive time allocations must be brought to the same point on the learning

curve.

The preceding analysis assumes that both the item weights and the learning curves are identical.

In practice, items may vary with respect to their intrinsic difficulty as well as the importance placed

on them by the learner. We now consider both these possibilities for the special case of exponential

learning curves. Suppose that the learning curve for item i is given by

ai = fi(si) = 1− e
−xisi , (2)

and the learner wishes to maximize the weighted sum of competences
Pn
i=1wibi. In this case, items

vary both with respect to the difficulty of learning xi and their value to the learner wi. Here xi is

a measure of the ease with which the decision maker can raise competence in the particular task i.

High values of xi imply that relatively small time investments can have large effects on competence.

Similarly, raising competence in some tasks may be more important to the decision maker than

doing so in other tasks. This asymmetry would result in unequal weights wi across tasks.

Now suppose that, given initial competence ai, an additional amount of time ti is allocated to

the task, resulting in a level of final competence bi. Then

bi = 1− e
−xi(si+ti) = 1− e−xisie−xiti = 1− (1− ai) e−xiti .

What is the optimal allocation of time across tasks in this case? As before, optimality requires the

equalization of marginal returns to time allocated across the tasks. With different learning curves

and item weights, optimality requires that for every pair of items i and j,

wif
0
i(si + ti) = wjf

0
j(sj + tj).

Hence the following must hold at any optimal allocation:

wixi (1− ai) e
−xiti = wjxj (1− aj) e−xjtj .

This can be rewritten as

xiti − xjtj = log

µ
wixi(1− ai)

wjxj(1− aj)

¶
.

In the special case of xi = xj and wi = wj for some pair i and j (where both tasks have the same

learning curve and value to the learner) the above implies that ti < tj if and only if ai > aj . In

other words, the optimizing decision maker allocates more time to the task which has a lower level

of initial competence. However, if either xi 6= xj or wi 6= wj , then it is possible for the task with
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higher initial competence to receive more attention. This is especially likely to occur if the intrinsic

difficulties of learning the two items are vastly different, or if one item is much more highly valued

than the other. Allocating time to the task which requires more time to increase competence can

involve laboring in vain (Mazzoni, Cornoldi, & Marchitelli, 1990; Mazzoni & Cornoldi, 1993; Nelson

& Leonesio, 1988). Similarly tasks in which raising competence is of greatest value will tend to

receive more attention, unless they are at significantly flatter portions of the learning curve.

4 Logistic Learning Curves

Now suppose that the learning curves are S-shaped, as in the right panel of Figure 1. Specifically,

suppose that there exists some time availability τ such that the slope f 0 is increasing for time

allocations below τ and decreasing above. This implies that f 00(τ) = 0, f 00 (si + ti) > 0 for si+ti < τ ,

and f 00 (si + ti) < 0 for si + ti > τ , as in Figure 4. In this case, the manner in which optimal

allocations vary with total available time is both more complicated and more interesting, even in

the simplest case where items have equal values and identical learning curves.
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Figure 4. Two Items with Initial Competence below f(τ).

Consider the case of two items and suppose that initial competences a1 and a2 are both below

f(τ), as in Figure 4. That is, we have s1 < s2 < τ , so both items are on the segment of the learning
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curve with increasing slope. It is then possible to show that there exists a threshold value T̂ of total

available time such that the optimal allocation assigns all available time to item 2 whenever T < T̂ .

If T > T̂ , the optimal allocation assigns positive time to both items but with greater time given to

item 1 (see the appendix for a formal proof of this claim). At the critical value of total time T̂ , the

optimal strategy shifts discontinuously from allocations in which attention is focused exclusively on

item 2, to allocations in which item 1 receives more attention than 2. Crucially, the amount of time

allocated to item 2 decreases in absolute terms as total available time crosses this critical value.

Hence item 2 is brought further away from the plateau of its learning curve at this point. Figure 5

illustrates this phenomenon. Within each regime, optimal allocations vary smoothly with changes

in total time T . At the point of transition between the two regimes, though, there is a jump in the

allocations to both items, with t1 leapfrogging t2.
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Figure 5. Optimal Allocations with Logistic Learning (a1 = 0.06, a2 = 0.16).

The basic findings in the two-item case generalize to the case of multiple items. Optimal

allocations in the case of three items are depicted in Figure 6. As before, item 1 has the lowest

level of initial competence, and item 3 the highest. In this case two transitions occur, and three

regimes may be identified. When time pressure is highest, all attention is devoted to item 3. As

time availability rises, a transition point is reached at which t3 drops discontinuously and t2 rises

from zero to a point above t3. Both items 2 and 3 receive attention throughout this regime, with
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more time being allocated to the initially less well learned item 2. As time availability becomes even

more abundant, a second transition point is reached at which both t2 and t3 drop discontinuously,

and t1 rises from zero to a point above t2. Within this last regime, all items are given at least

some attention, with most attention going to item 1, followed by item 2 and then 3. As in the case

of two items, optimal allocations vary smoothly within regimes, but shift in a discontinuous and

non-monotonic manner at transition points.
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Figure 6. Optimal Allocations with Logistic Learning (a1 = 0.06, a2 = 0.16, a3 = 0.35).

The preceding discussion (including Figures 4-6 and the formal result in the appendix) are

based on the hypothesis that different items are at different levels of initial competence on the

same learning curve. Optimality then requires that, for any given level of time availability, the

subset of items chosen for study are those closest to a learned state. Within this set of items,

however, greatest attention is paid to those items with the lowest levels of initial competence. For

reasons discussed in the previous section, these basic conclusions remain intact even when learning

curves and value weights differ across items, as long as such differences are not too great.

A limiting case of the logistic learning curve (as the curves become increasingly steep in the

intermediate range) is a step function. Such functions are entirely flat (at zero competence) until

some threshold level of time allocation has been reached, and then jump discontinuously to a fully
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learned state. In the special case of identical thresholds for each item, the optimal allocation is

easily characterized. When total time available is too low to bring any item to its threshold then

all allocation strategies are equally ineffective. As time available increases, there comes a point

at which it becomes possible for the learner to bring one item (the one with the highest initial

competence) to its threshold. It is optimal for the learner to allocate all available time to this

item. Further increments in total available time may then be allocated to the item that is now

closest to its threshold but still below it. Reasoning in this manner we see that optimal behavior

entails allocations to a sequence of tasks, starting with the one with initially highest competence

and moving down the lists of tasks in order of initial competence.

Step functions can be quite realistic descriptions of learning in environments where the learner

simply needs to reach some threshold level of competence. Consider, for instance, the case of

a driving test in which passing requires only that a certain level of errors is not exceeded. If

competence is measured as the likelihood of passing, then time allocations within a broad range

can reduce errors without raising competence. Uptake functions with diminishing returns simply

cannot apply to learning under these conditions.

5 Existing Theory and Evidence

While a thorough empirical analysis of the model’s predictions is well beyond the scope of this paper,

we here take a first look at the available data from the perspective of the optimization framework.

Data on time allocation have typically been collected using the following experimental paradigm.

Learners are initially confronted with a list of to-be-learned items (typically words) and asked to

assess their judgments of learning for each item. Next, each of the items is presented in sequence,

for a duration determined by the learner. Since time constraints are absent, participants are free

to allocate as much time as they wish to each item, while the amount of time spent on each item is

recorded. Using this method, results have shown that individuals tend to allocate more study time

to the judged-difficult items (those further away from a learned state) than to the judged-easy items

(Cull & Zechmeister, 1994; Mazzoni & Cornoldi, 1993; Mazzoni et al., 1990; Nelson, Dunlosky, Graf,

& Narens, 1994; Nelson & Leonesio, 1988; Thiede & Dunlosky, 1999). Based on the data collected

using these methods, the discrepancy reduction hypothesis was formulated to describe how people

used their metacognitive judgments to control subsequent time allocation (Dunlosky & Hertzog,

1998). According to discrepancy reduction, learners compare the degree of discrepancy between

the current state of an item (e.g. unlearned, almost learned, learned, etc.) and their own desired

state of learning for that item. They then allocate time disproportionately to those items which
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are characterized by the highest levels of initial discrepancy.

Our model shows that discrepancy reduction strategies may indeed be optimal, provided that

the learning curve is characterized by diminishing returns, and learners maximize the sum of com-

petences across items. On the other hand, with logistic learning curves, discrepancy reduction

strategies are no longer optimal in general. In this case, the set of items chosen for study are those

initially closest to a learned state, although within the subset of items selected for study, those

furthest from a learned state receive the most attention. Hence, discrepancy reduction holds in

the limited sense that it applies only to the subset of items chosen for study. These properties are

consistent with the hierarchical model and experimental findings of Thiede and Dunlosky (1999)

and Dunlosky and Thiede (2004).

More recently, there have been a number of studies that have challenged the discrepancy re-

duction view (Metcalfe, 2002; Metcalfe & Kornell, 2003, 2005; Son & Metcalfe, 2000). Son and

Metcalfe (2000), for example, examined the effects of time pressure on people’s time-allocation deci-

sions. Their results showed that people did allocate more time to items that were judged as difficult,

but only under conditions where participants were not time pressured. Under high time pressure

conditions, people’s time allocation strategies shifted towards allocating time to the judged-easy

items. Similarly, Metcalfe (2002) considered three distinct time pressure conditions: low, medium

and high. Under these circumstances, people behaved in a manner consistent with discrepancy

reduction only in the low pressure condition. In the medium pressure condition, the most time

was allocated to items of medium difficulty; while in the high pressure condition, most time was

allocated to items of low difficulty. This led to the development of an alternative approach to time

allocation, the region of proximal learning model.

The region of proximal learning model is based on the notion that people have a “zone” of

learning where they allocate the most study time to items that are not too easy, but not so difficult

that the returns to the investments of time are extremely low (Metcalfe, 2002; Metcalfe & Kornell,

2003, 2005). Specifically:

“If there is a range of to-be-learned items, then before anything is learned, the easiest

items will be in the proximal learning state and will gain the most from study. Once

those easy items are mastered, though, little additional gain would be expected for

additional study effort on them, and the region of proximal learning should shift to an

item set that is more difficult. Learning, then, is reflected in a shift toward study of

items of progressively greater difficulty” (Metcalfe, 2002, p. 350).

These findings are interpreted by the authors as reflecting optimal behavior under diminishing
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returns, but with substantial differences in learning curves across items (Metcalfe and Kornell,

2005). As noted above, if some learning curves are much flatter than others, then a discrepancy

reduction strategy would not generally be optimal, even under diminishing returns.

An alternative interpretation of these findings (from the perspective of our model) is that

learning curves are roughly similar across items, but are logistic in shape, with difficult items being

at the flat initial segment of the curve, and the easiest items further up and closer to the plateau

or learned state. In this case, items of moderate difficulty, which lie on the steepest segment of

the learning curve, would receive the highest time allocations under optimal learning. Items that

are either too easy or too difficult would receive less time, since investments in these items would

result in very small gains. One way to implement such a strategy would be to begin by investing

in items of intermediate difficulty until these are brought to flatter portions of the learning curve,

and then moving in sequence to increasingly difficult items. This is precisely the pattern reported

by Metcalfe and Kornell.

6 Discussion

Existing data in the time allocation literature have commonly been interpreted as indicative of op-

timal learning (for instance, Thiede & Dunlosky, 1999; Son & Metcalfe, 2000; Metcalfe & Kornell,

2005). The model developed here makes transparent the fact that the properties of optimal alloca-

tions are highly sensitive to structural characteristics of the learning environment. Hence strategies

that are highly effective with one class of learning curves may be quite ineffective with another.

This possibility seems to have been largely neglected in theoretical models of metacognitive control.

The model of optimal time allocation developed here implies a systematic relation between the

extent of total available time and the pattern of its use. For instance, when items are comparable

with respect to value and rate of learning, those items furthest away from a learned state receive

the most attention, regardless of the extent of time pressure under diminishing returns. With

learning curves of a logistic type, however, small differences in total available time can result in

large qualitative differences in the nature of the optimal strategy. For any given level of time

availability, the set of items chosen for study are those closest to a learned state, but within this

set, the ones furthest away from a learned state receive the most attention. The non-monotonicity

at transition points and the leapfrogging (with respect to time allocation) of initially better learned

items by items that are initially less well learned are novel predictions of this model. Hence optimal

time allocation strategies depend critically on certain characteristics of the learning environment,

such as the extent of time pressure, and the nature of the uptake function.
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Under what circumstances might optimal allocations be uncovered by the learner? In practice,

critical information about the basic structure of the learning environment (such as the general form

of the uptake functions) may be unknown. Since cognitive capacity is limited, learners may be

forced to adopt simple heuristics or rules-of-thumb based on limited information, such as the slopes

of the learning curves in the immediate vicinity of the current allocation. For instance, consider the

simple rule which prompts learners to allocate resources to whichever task has the steepest (value-

adjusted) uptake at the current time. This will result in optimal time allocation under diminishing

returns, but not under logistic uptake functions. Hence there will generally arise situations in which

the predictions of optimizing models fail to accurately match real world behavior. The idea that

optimization models implicitly assume that no resources (cognitive or material) are required in

order to solve optimization problems has been emphasized by Simon (1978) and Conlisk (1988).

These limitations are particularly evident when considering the time-allocation problem, since the

formulation and solution of optimization problems is clearly time-intensive, and any attempt at

optimization runs the risk of squandering the scarce resource. Hence it is not surprising that learners

have been found to use simple but ineffective strategies in certain contexts (as in Atkinson, 1972)

while adopting effective strategies in others (as in Metcalfe and Kornell, 2003). The optimization

model can be used to identify conditions under which behavior should be consistent with optimal

choice, and when it is likely to be inconsistent. It can therefore be used to address the question of

whether and when learners should be able to exercise good metacognitive control in practice.

One of the main objectives of this paper is to explore in a rigorous manner the implications of op-

timizing behavior under various learning conditions. Since the notion of optimality is often invoked

informally in the literature on learning, we consider it useful to provide a precise formulation of the

optimization problem and its solution. Nevertheless, several interrelated psychological processes

have not been captured in the current model. We have ignored the possibility that competence may

decline over time in the absence of reinforcement. Additionally, we have assumed implicitly that

the level of final competence attained depends only on the cumulative total time allocated to that

item, and not on the manner in which this allocation is spaced over time, or sequenced in relation

to allocations to other items. Issues of sequencing and spacing have been shown to be empirically

important (Son, 2004), and extensions of the current model in this direction is a priority for future

research.
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Appendix

Proposition. Suppose that the learning curve f(s+ t) has the following properties f 0 > 0, f 00(τ) =

0, f 00 (si + ti) > 0 for si + ti < τ , and f 00 (si + ti) < 0 for si + ti > τ . Suppose also that initial

competences a1 and a2 are such that a1 < a2 < f(τ). Then there exists a threshold value T̂ of total

available time such that the optimal allocation (t1, t2) = (0, T ) for T < T̂ . For T > T̂ , the optimal

allocation (t1, t2) satisfies t1 > t2 > 0.

Proof. The optimization problem may be stated as follows: the learner must choose t1 and t2 to

maximize the sum b1 + b2, subject to the constraints t1 ≥ 0, t2 ≥ 0, t1 + t2 = T. Applying the

method of Lagrange multipliers (Intriligator, 1971, Chapter 3) to this problem, we get the following

Lagrangian

L = b1 + b2 + λ1t1 + λ2t2 + λ3 (T − t1 + t2)

= f(s1 + t1) + f(s2 + t2) + λ1t1 + λ2t2 + λ3 (T − t1 + t2)

where λ1, λ2 and λ3 are the Lagrange multipliers. Any maximum must satisfy the first order

conditions for optimality:

∂L

∂t1
= f 0(s1 + t1) + λ1 − λ3 = 0,

∂L

∂t2
= f 0(s2 + t2) + λ2 − λ3 = 0.

Any maximum in which both t1 and t2 are positive satisfies λ1 = λ2 = 0 and hence f 0(s1 + t1) =

f 0(s2 + t2), which is equation (1) in the text.

First we show that if T is sufficiently small, the optimal allocation is (t1, t2) = (0, T ). Suppose

T < min{s2−s1, τ−s2}, see Figure 4. Then at any feasible (t1, t2) we have f 0(s1+t1) < f 0(s2+t2),

so any allocation with t1 > 0 cannot be optimal.

Next we show that if T is sufficiently large, then t1 and t2 are both positive. Define σ1 > s1 as the

unique point at which the learning curve has the same slope as it does at s1 (see Figure 4). That is,

f 0(σ1) = f 0(s1). Suppose T ≥ σ1. If (t1, t2) = (0, T ), then f 0 (s2 + T ) < f 0(s1) which is inconsistent

with optimality. On the other hand, if (t1, t2) = (T, 0), then f 0 (s1 + T ) · f 0(s1) < f 0(s2), again

inconsistent with optimality. Hence, both t1 and t2 must be positive.

Next we show that (t1, t2) = (T, 0) is never optimal. Suppose, by way of contradiction, there

exists some T such that (T, 0) is optimal. Then f 0(s1 + T ) > f 0 (s2) , and hence s2 < s1 + T < σ2

(see Figure 4). But in this case the same value of b1+ b2 can be attained by setting (t1, t2) = (s2−

s1, T − (s2 − s1)). However this cannot be optimal since, in this case, (s1+ t1, s2+ t2) = (s2, s1+T )

and f 0(s2) < f 0 (T + s1) .
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Let T̃ be the largest value of T for which (t1, t2) = (0, T ) is optimal. Clearly f 0(s1) · f 0(s2+ T̃ ).

Then for T > T̃ , t1 and t2 are positive. This implies the equality of slopes condition

f 0 (s1 + t1) = f 0 (s2 + t2) .

If s1+ t1 = s2+ t2 then t1 > t2. If s1+ t1 6= s2+ t2, and t1 · t2, then s1+ t1 < s2+ t2 and equality

of slopes implies

f 00 (s1 + t1) > 0 > f 00 (s2 + t2) . (3)

The above condition is inconsistent with a maximum. To see this, note that a necessary second order

condition for a maximum is that the following Hessian matrix be negative semidefinite (Intriligator,

1971):

H =

⎛⎝ ∂2L
∂t21

∂2L
∂t1∂t2

∂2L
∂t2∂t1

∂2L
∂t22

⎞⎠ =
⎛⎝ f 00 (s1 + t1) 0

0 f 00 (s2 + t2)

⎞⎠
The matrixH can only be negative semidefinite if f 00 (s1 + t1) and f 00 (s2 + t2) are both non-positive,

contradicting (3). Hence t1 · t2 is impossible at an optimal allocation in which both t1 and t2 are

positive.
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