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Abstract

I introduce a solution concept for infinite-horizon games, called
“Nash equilibrium with added tests”, in which players optimize with
respect to relevant threats only after having tested them before. Both
the optimal response and the tests are part of equilibrium behavior.
The concept is applied to repeated 2×2 games and yields the following
results:

• Sustained cooperation in games such as the Prisoner’s Dilemma
is preceded by a “build up” phase, whose comparative statics are
characterized.

• Sustainability of long-run cooperation by means of familiar self-
enforcement conventions varies with the payoff structure. E.g.,
“constructive reciprocity” achieves cooperation with minimal build-
up time in the Prisoner’s Dilemma, yet it is inconsistent with
long-run cooperation in Chicken.

• Nevertheless, a “folk theorem” holds for this class of games.
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1 Introduction
The theory of infinitely repeated games with perfect monitoring sustains
non-myopic behavior, as part of an optimal response to threats to “punish”
unwarranted myopic play. The reason that players acknowledge these threats
varies across equilibrium concepts. In Nash equilibrium (NE), a player’s
belief in the reality of his opponent’s threats is simply assumed to be correct.
In subgame perfect equilibrium (SPE), the threats are also required to be
“credible”, in the following sense: had the player tested the threats, the
opponent would have wanted to carry them out.
This paper studies a different “source of credibility” of threats in repeated

games: players acknowledge threats that make them behave non-myopically,
simply because they actually tested the threats in the past and witnessed
their actual realization. In other words, players optimize against a relevant
threat only after having tested it. I refer to such tests as “T-tests”.
To illustrate this idea, consider the infinitely repeated Prisoner’s Dilemma

(PD henceforth) with discounting. As usual, stage-game payoffs satisfy:
u(C,C) > 1

2
u(D,C) > u(D,D) > u(C,D) = 0. Suppose that player 2

plays the strategy represented by Figure 1:

 D C 
C 

D 

   C   D 

Figure 1

If player 1 is sufficiently patient, strict optimization prescribes that he
play C against player 2’s C-state. This is justified by player 2’s threat to
punish defection against the C-state. If the threat did not exist - i.e., if player
2 continued to play C regardless of player 1’s behavior - cooperation would
cease to be optimal for player 1. Hence, the threat associated with the C-state
affects player 1’s optimal response - it is “relevant”. Our model of behavior
requires player 1 to test the threat (by playingD) before he optimizes against
it. In contrast, the threat associated with player 2’s D-state (to remain in
that state if player 1 cooperates) prescribes the stage-game best-reply (D)
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for player 1. This would also have been the optimal action in the absence
of the threat. Hence, the threat is “irrelevant” and will never be tested by
player 1.
Why would a player want to run T-tests? An obvious motivation is

strategic uncertainty: the player is not absolutely confident of the threats he
ascribes to his opponent; to verify their reality, he runs T-tests. However,
there are other possible rationales for T-tests, even when the player perfectly
knows his opponent’s strategy. E.g., the player may be tempted by the my-
opic response; he must actually experience the consequences of succumbing
to the temptation before he can start serving his long-run interests. Alter-
natively, the player may need to justify his behavior ex-post to a principal
and realizing the opponent’s threats may be necessary in order to persuade
the principal.1

At any rate, the present paper does not adhere to any particular ratio-
nale for T-tests, but simply assumes that players optimize against relevant
threats only after having tested them. The question of rationalizing T-tests
is deferred to the concluding section.
So far, we have dealt with the behavior of an individual player. In order

to analyze repeated 2 × 2 games, in which both players behave in this way,
I introduce an equilibrium concept, which incorporates T-tests into its very
definition. A “Nash equilibrium with added tests” (NEWT) is a pair
of pure strategies that induce a play path, in which players optimize against
relevant threats only after having tested them finitely many times; the T-
tests come to an end in finite time and the players eventually adhere to
best-replying.
In NEWT, each player follows a single strategy from beginning to end,

which carries out both the best-replying and the T-tests with respect to
the opponent’s strategy. Thus, NEWT is not a refinement of NE because it
allows for sub-optimal actions (the T-tests) along the play path. For the sake
of methodological parsimony, NEWT accommodates no further departures
from best-replying, apart from T-tests.
Figure 2 presents an example of a NEWT in the repeated PD, in finite

automata representation. Both s1 and s2 contain two relevant threats, associ-
ated with the states q0, q2 and r1, r2. Player 1 (2) departs from best-replying
at periods 2 and 3 (1 and 4). All of these departures are T-tests that back-up

1See Spiegler (2000) for a formalization of this idea, and Tetlock and Boettger
(1989,1994) for experimental evidence on the justifiability motive.
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subsequent non-myopic optimal responses to the relevant threats.

 s1: 

s2: 

D D C 
 C  

D C 

     C  

D 

 D  

 C  

D 

 D  

D 
C 

q 0 q1 q 2 

r1    r0  r2  

 
S tates    1 :   q 0   q0   q1   q 2   q 1   q2   q 2   ... 
Ac tio ns  1 :   D    D    D    C    D    C    C    ... 
Ac tio ns  2 :   D    C    D    D    D    C    C    ... 
S tates    2 :   r0    r1   r2    r2   r0    r1    r1   ... 

Figure 2

Our analysis of NEWT contains two novel contributions to the study
of long-term cooperation: (1) characterization of a “build-up” phase that
precedes cooperation in repeated 2 × 2 games; (2) re-examination of the
sustainability of long-run cooperation by means of familiar self-enforcement
conventions, such as reciprocity or trigger strategies.
The NEWT given by Figure 2 exhibits two interesting features. First,

players move gradually frommutual defection to mutual cooperation, through
a five-period “build-up” phase. Second, equilibrium strategies display a “con-
structive reciprocity” property: when players are in a “cooperative” state,
they continue to cooperate if and only if the opponent plays cooperatively.
Both features recall similar behavior patterns reported by Selten et. al.
(1997) in their experimental study of repeated duopoly.
While NE or SPE are silent over the existence and properties of a cooper-

ation build-up phase, such a phase is a prerequisite for long-run cooperation
under NEWT. Moreover, the build-up phase of Figure 2 is the shortest pos-
sible in the repeated PD. The minimal cooperation build-up length increases
as u(C,C) decreases and the players become more patient. The minimal
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build up can always be achieved in NEWT by strategies that display con-
structive reciprocity.
Surprisingly, constructive reciprocity turns out to be inconsistent with

sustained cooperation in the repeated game of “Chicken”. Thus, while
constructive reciprocity is an efficient convention for sustaining cooperation
in repeated PD under NEWT, it obstructs the attainment of the same goal
in repeated Chicken. By comparison, mutual cooperation is NE- and SPE-
sustainable in both PD and Chicken, by strategies that display constructive
reciprocity. This result reveals a sense, in which “developing cooperation in
collective action problems” and “attaining peace in conflicts over a scarce
resource” are two inherently different problems.
Results of similar flavor are obtained for “trigger” strategies, perhaps the

simplest and most familiar self-enforcement convention in repeated games.
“Trigger” strategy structures, both “grim” and “forgiving”, that are sufficient
to generate Nash and perfect “folk theorems” in repeated symmetric 2 × 2
games, turn out to be highly restrictive under NEWT.
If the performance of these simple self-enforcement conventions is so sen-

sitive to the payoff structure, the question arises, whether a NEWT folk
theorem holds for repeated 2×2 games. The answer turns out to be affirma-
tive: every individually rational payoff profile in repeated 2×2 games can be
approximated by some NEWT. It is unclear whether this result is extendible
to larger games.
The paper proceeds as follows. Section 2 defines the concept of NEWT

for simultaneous-move, repeated 2 × 2 games. Section 3 uses NEWT to
revisit the problem of sustaining cooperation in repeated PD and Chicken.
Section 4 analyzes NEWT with trigger strategies in repeated symmetric 2×2
games. Section 5 presents the folk theorem. Section 6 extends the concept
of NEWT to a broader class of infinite-horizon games and analyzes a few
examples (including a repeated Ultimatum game). Section 7 discusses the
interpretation of the equilibrium concept. Some proofs are relegated to the
appendix.

2 The Equilibrium Concept
Two players play an infinitely repeated, simultaneous-moves 2×2 games with
discounting. Denote the action set (for both players) by A. Player j’s stage-
game payoff function is denoted by uj and his opponent’s identity is denoted
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by −j. For every aj ∈ A, denote −j’s stage-game (“myopic”) best-reply by
br−j(a) ∈ A. Stage-game indifferences are assumed away. For every a ∈ A,
denote −a = A\{a}.
We will only consider pure strategies that admit a finite automata rep-

resentation (Qj, q0j , fj, τ j), where: Qj is a finite set of states; q
0
j is the initial

state; fj : Qj → A is an output function, which specifies the action taken by
player j when he is in state q ∈ Qj; and τ j : Qj × A → Qj is a transition
function, which specifies the state to which the automaton switches from
state q ∈ Qj when the opponent plays a−j ∈ A against q. The transition
from q is said to be constant if τ j(q, a) = τ j(q,−a).2 Note that a pure strat-
egy has an infinite number of finite automata representation. We will always
identify a strategy sj with a fixed representation (Qj, q0j , fj, τ j).
Let z (s1, s2) = ((ak1, a

k
2))k=0,1,2,... be the play path induced by the strategy

profile (s1, s2), where akj ∈ A is player j’s action at period k. I.e., a0j =
fj(q

0
j ), a

1
j = f(τ j(q

0
j , a

0
−j)), and so forth. Given z(s1, s2), the function pj :

{0, 1, 2, ...} → Qj keeps track of the state of player j’s strategy at period k
along z (s1, s2). Using Figure 2 for illustration, BR2(q0) = BR2(q2) = C and
BR2(q

1) = D; along the play path, p1(0) = p1(1) = q0, p1(2) = q1, etc.
Because preferences satisfy the discounting criterion, sj induces a well-

defined correspondence BR−j : Qj → A, which assigns to every q ∈ Qj the
set of actions for −j that are consistent with best-replying to sj, at any
period k for which pj(k) = q. For expositional simplicity only, assume that
BR−j(q) is a singleton for every q ∈ Qj. It is referred to as −j’s “long-run
best-reply” action against q. For example, in Figure 1, BR(qC) = C and
BR(qD) = D. Whenever τ j(q, ·) is constant, BR−j(q) = br−j [fj(q)].
Given (s1, s2), let e(q) be the number of times −BR−j(q) is played against

q ∈ Qj, before BR−j(q) is played against q for the first time along z (s1, s2).
If BR−j(q) is never played against q along z (s1, s2), then e(q) is simply the
total number of periods along z (s1, s2), for which pj(k) = q. E.g., in Figure
2, e(q0) = e(q2) = 1, e(q1) = 0.
We are ready to formulate an equilibrium concept for repeated 2 × 2

games, which reflects the idea that players respond optimally to relevant
threats only after having tested them.

2The finite automaton given in Figure 1 is: Q = {qC , qD} ; q0 = qC ; f(qC) = C and
f(qD) = D ; τ(q, C) = q ; and τ(q,D) = Q\{q} for every q ∈ Q.

6



Definition 1 (s1, s2) is a Nash equilibrium with added tests (NEWT)
if for every player j = 1, 2:

1. ak−j = BR−j[pj(k)] for every sufficiently large period k along z(s1, s2).

2. e(q) > 0 if and only if BR−j(q) 6= br−j [fj(q)], for every state q ∈ Qj
that is visited along z(s1, s2).

The first condition says that eventually, players stick to best-replying.
The second condition says that they test threats that affect optimal response,
finitely many times, before optimizing against them. A non-myopic action is
optimal only in the face of a threat to punish the sub-optimal action, whereas
the myopic action is justified even in the absence of such a threat. Therefore,
testing threats occurs in the former case but not in the latter. In order for us
to able to isolate the effect of T-tests on repeated-game behavior, Definition
1 allows no further departures from best-replying.
It is known that a path induced by finite automata eventually enters a

cycle (see Osborne and Rubinstein (1994, Ch. 8)). I.e., there exist an earliest
period k∗ and an integer L, such that pj(k) = pj(k + L) for every j = 1, 2,
k ≥ k∗. Thus, all T-tests take place prior to k∗. Starting at period k∗, players
play a repeated-game NE (s01, s

0
2), where s

0
j is identical to sj, except that the

initial state is pj(k∗) instead of pj(1) = q0j . NEWT can be viewed as a NE
with altered initial states, such that the e(q)’s obey Definition 1.
The incorporation of T-tests into a notion of equilibrium behavior raises

interesting questions of interpretation, which will be discussed at length in
Section 7. In the meantime, let us conclude the present section with a
number of comments.

1. Definition 1 requires T-tests against any relevant threat that is encoun-
tered along the entire play path, not just those that are encountered
in its cyclic phase. E.g., in Figure 2, the threat associated with state
r2 is encountered only in the pre-cyclic phase. It would not have been
encountered if player 1 had not run the T-test against r1. Nevertheless,
player 1 runs a T-test against r2.

2. There are three possible kinds of violation of NEWT:
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(a) The cyclic phase of the play path contains sub-optimal behavior.

(b) BRj[p−j(k)] = brj(ak−j) and a
k
j 6= BRj[p−j(k)] for some k.

(c) akj = BRj [p−j(k)] 6= brj(a
k
−j) and there is no l < k satisfying

p−j(l) = p−j(k), alj = brj(a
l
−j).

3. Every non-zero-sum 2 × 2 game has a pure-strategy NE. An infinite
repetition of this NE is consistent with NEWT because it displays both
long-run and myopic best-replying, so no T-tests are needed. It follows
that a NEWT exists for every repeated non-zero-sum 2× 2 game.

4. In general, every repeated-game NE, whose induced (eventually cyclic)
play path consists of nothing but stage-game Nash equilibria, is also a
NEWT. Every other NE contains non-myopic behavior that is sustained
by untested threats and is therefore not a NEWT. Likewise, every other
NEWT contains sub-optimal behavior and is therefore not a NE. Thus,
the intersection between the class of NEWT and the class of NE consists
of the NE, in which players play a stage-game NE at every period.

Of course, we are mostly interested in characterizing the class of non-NE
NEWT. It is to this task that we now turn.

3 Building up Cooperation in PD and Chicken
We have already seen in Section 1 that sustained cooperation in repeated
PD is NEWT-sustainable. In Figure 2, players start cooperating indefinitely
after a build-up phase that lasts five periods. This turns out to be the
shortest build-up phase under NEWT. Formally, let kC be the earliest period,
for which there exists a NEWT in the repeated PD, such that along the
equilibrium path, ak1 = a

k
2 = C for every k ≥ kC.

Theorem 1 kC ≥ 6. Moreover, k∗ increases as players become more patient
and as u(C,C) decreases.

The comparative statics are intuitive. The lower u(C,C) or the more
patient players are, the harsher the punishment that is needed to sustain
cooperation. Since this punishment must be realized along the equilibrium
path, the build-up phase is longer.
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The strategies used in the construction of the minimal build-up dis-
play a familiar convention for self-enforcing cooperation, to which I shall
refer as “constructive reciprocity”.3 When players play cooperatively
at period t, they reciprocate - i.e., they cooperate at t + 1 if and only
if the opponent cooperates at t. (See Figures 1, 2 and 8). Formally, let
a∗ = argmina∈A2 [maxb∈A1 u1(b, a)] be the minimax action in a symmetric
2× 2 game. (the definition for asymmetric games is straightforward.)

Definition 2 A strategy s = (Q, q0, f, τ ) in a repeated symmetric 2×2 game
satisfies constructive reciprocity, if f [τ(q, a)] = a for every a ∈ A and
every q ∈ Q satisfying f(q) = −a∗.

Such strategies are also referred to as CR strategies. No restrictions
are imposed on transitions from a∗-states or on the initial state.
Mutually cooperation is NE- and SPE-sustainable by CR strategies, not

only in repeated PD but also in repeated Chicken. As CR strategies sustain
cooperation in repeated PD in the most efficient way possible under NEWT,
the question arises whether this property holds for the game of “Chicken”,
given by the following payoff matrix. As usual, assume b > a > b+1

2
> 1.

The minimax action is “Hawk”.

Dove Hawk
Dove a, a 1, b
Hawk b, 1 0, 0

Theorem 2 There exists no NEWT with CR strategies in repeated Chicken,
in which ak1 = a

k
2 = “Dove” for every sufficiently large k.

Proof. Let D and H stand for “dove” and “hawk”. First, observe that
by constructive reciprocity and the payoff structure of the game, BR(q) = D
whenever f(q) = D. Thus, f [τ(q,D)] = D implies BR(q) = D for every q.

3This term is due to Joel Sobel.
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Denote the earliest period, in which both players play D, by t∗. By the
structure of CR strategies, at1 = at2 = D for every t > t∗. Therefore, by
NEWT, each player plays H at least once prior to t∗. If at

∗−1
j = D and

at
∗−1
−j = H, then sj violates constructive reciprocity. Therefore, it must be
that at

∗−1
1 = at

∗−1
2 = H.

Let k∗ denote the earliest period k, in which ak1 = a
k
2 = H. By NEWT,

BR−j [pj(k∗)] = H for both j = 1, 2, because H 6= br(H). By NEWT, for
each player j = 1, 2, there exists kj < k∗, such that pj(kj) = pj(k

∗) and
a
kj
−j = D. Let k1 < k2, without loss of generality. By the structure of CR
strategies, ak1+12 = H. By the definition of k∗, ak1+11 = D. It follows that
f1[τ 1(p1(k

∗), D)] = D. Therefore, BR2[(p1(k∗)] = D, a contradiction.

Thus, the problem of sustaining cooperation with CR strategies is radi-
cally different for PD and for Chicken. The key to this result is that under
NEWT with CR strategies, “peace” (mutually dovish play) must be pre-
ceded by at least one “war” (mutually hawkish play). Since H is not a
myopic best-reply to itself, this must be backed up by T-tests as well, but
these are accompanied by yet another “war”, which triggers further T-tests,
and so forth. In contrast, mutual defection in PD is a stage-game NE, which
triggers no further T-tests.
I believe that these results capture a genuine distinction, which escapes

standard equilibrium concepts, regarding the real-life interactions for which
PD and Chicken serve as parables. To put it figuratively, constructive reci-
procity is an efficient convention for building up cooperation in “collective
action” problems, but a destructive convention for overcoming “conflicts over
a scarce resource”.
When constructive reciprocity is violated by at least one of the players, it

is quite easy to sustain cooperation in repeated Chicken. The following play
path is NEWT-sustainable:

Player 1 H D H D D D ...

P layer 2 D H D D D D ...

The equilibrium strategies are given by Figure 3:

10



 

 H  D  H  

D  

 H  
s1: 

 D s2:  H  D  
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 H  

Figure 3

Note that s2 (unlike s1) is not a CR strategy - it does not retaliate against
player 1’s hawkish move at period 3. The cooperation build-up phase is the
shortest possible under NEWT. The comparative statics are the same as in
Theorem 1: the lower u(D,D) and the higher the discount factor, the longer
the minimal build-up.

4 NEWT with Trigger Strategies
This section studies the performance of “trigger strategies” under NEWT.
This familiar self-enforcement convention, which is rich enough to generate
Nash and perfect “folk theorems” for repeated symmetric 2× 2 games, turns
out to be highly restrictive under NEWT.
Let us begin with “grim” trigger strategies, which punish a deviant player

by “minimaxing” him for the rest of the game. Formally, a strategy sj
with a finite-automata representation (Qj , q0j , fj , τ j) is a “grim” trigger
strategy if for every q ∈ Qj with non-constant τ j(q, ·), fj[o(q)] = a∗ and
τ j [o(q), ·] = o(q), where o(q) = τ j(q,−BR−j(q)).
In the present context, grim strategies are quite uninteresting. Since

every sub-optimal action triggers a grim punishment, we should not expect
non-myopic behavior to survive through the T-tests. This is indeed the case
(the proof is simple and therefore omitted):
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Remark 1 In any NEWT with grim strategies, akj = brj(a
k
−j) for every

j = 1, 2 and every sufficiently large k.

Let us now consider a more interesting class of trigger strategies, which
exhibits a “forgivingness” property. A state q ∈ Q is said to be reachable
from q0 ∈ Q if there exists a sequence of states q0, ..., qm ∈ Q (m > 0), such
that q0 = q0, qm = q, and for every k = 0, ...,m− 1, there exists a ∈ A, such
that τ (qk, a) = qk+1.

Definition 3 A strategy with finite automata representation (Qj , q0j , fj , τ j)
in a repeated symmetric 2× 2 game is a “prison” trigger strategy if:

1. Every state q ∈ Qj is reachable from any other q0 ∈ Qj.
2. For every q ∈ Qj with non-constant τ j(q, ·), playing −BR−j(q) against
q is punished by m(q) ≥ 0 periods, in which player j plays a∗ before
returning to q.4

Prison strategies consist of “normal” states and “punishment” states
(these categories are not mutually exclusive). When player −j plays sub-
optimally against a normal state q ∈ Qj with non-constant τ j(q, ·) is “mini-
maxed” for a non-negative numberm(q) of periods, which the strategy spends
in punishment states, and at the end of which it returns to q (the same “sit-
uation” in which the original sub-optimal play took place). Player −j’s
behavior during the punishment phase does not affect the duration of the
punishment, but this duration can vary with q. Finally, prison strategies
contain no irreversibility - every state can be reached from any other state.
Thus, the strategies represented by Figures 1 and 2 are not prison strategies.
Restricting attention to prison strategies is innocuous, as far as NE is

concerned. Every individually rational (and eventually cyclic) play path in a

4More formally, whenever τ j(q, ·) is non-constant, Qj contains a sequence of states
(q0, ..., qm(q)+1), such that:

(a) q0 = qm(q)+1 = q

(b) q1 = τ j [q,−BR−j(q)]
(c) fj(qn) = a∗ and qn = τj(qn−1, ·) for every n 6= 0,m(q).
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repeated symmetric 2× 2 game is sustainable by NE with prison strategies.
This is accomplished by fixing an arbitrarily high m(q) wherever necessary.
If we redefine the finite automata representation to allow players to condition
on their own past moves, prison strategies also generate an SPE folk theorem
for repeated symmetric 2× 2 games.
Let us turn to characterizing the class of NEWT with prison strategies

in repeated symmetric 2 × 2 games. Figure 4 presents a profile of prison
strategies in a repeated coordination game, whose payoff structure satisfies
u(G,G) > 3 · u(B,B) and u(G,B) = u(B,G) = 0, where {G,B} is the
action set. For sufficiently patient players, this strategy profile constitutes a
NEWT. The cyclic phase begins at period 4. Players 1 and 2 perform T-tests
at periods 3 and 2, respectively, to back-up their optimal miscoordination at
period 4.

B G G B G  s1 : 

s2 : B G G G G B 

 B 
  G 

    G   B 

Player 1:    B   G   B   B   G   G   B   G   B   ... 
Player 2:    B   G   B   G   G   G   B   G   G   ... 

Figure 4

In contrast to NE or SPE, the restriction to prison trigger strategies turns
out to be highly restrictive under NEWT.

Theorem 3 The only repeated symmetric 2×2 games, for which there exists
NEWT with prison strategies that contain non-myopic play, are coordination
games with a Pareto-dominant outcome. Moreover, in this class of games,
NEWT with prison strategies allows at most one period of miscoordination
per cycle.
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The proof will make use of the following lemma (see appendix for the
proof) :

Lemma 1 Suppose that (s1, s2) is a NEWT with prison strategies in a re-
peated symmetric 2 × 2 game. If ak−j 6= br−j(akj ) for some player j, then
period k belongs to the cyclic phase of z(s1, s2).

Proof of the theorem. Let us first consider play paths, in which
akj 6= brj(ak−j) for both players j = 1, 2, for some period k. By NEWT, there
exist periods l1, l2 < k, such that pj(lj) = pj(k) and a

lj
−j = br−j(aj). Consider

the latest such l1, l2 and let l1 < l2, without loss of generality. Then, the play
pattern in the periods that immediately precede k is given as follows (note
that −aj = br(a−j)):

Period l1 ... l2 ... k
Player 1 a1 ... −a1 ... a1
Player 2 −a2 ... a2 ... a2

By the definition of k and the structure of prison strategies, am1 = a
n
2 = a

∗

for everym = l1+1, ..., k−1 and n = l2+1, ..., k−1. It follows that −a1 = a∗.
By the structure of prison strategies, τ1[p1(l2), ·] is constant. By NEWT,
a2 = br(a

∗). The only symmetric 2× 2 game, for which all these conditions
hold, is a pure coordination game with a Pareto-dominant outcome.
Let us now show that in the class of coordination games with a Pareto-

dominant outcome, equilibrium paths contain no more than a single period
of miscoordination per cycle. Assume that there exist (at least) two periods
k and l (where k < l), such that ak1 6= ak2 and a

l
1 6= al2. By Lemma 1,

period k already belongs to the cyclic phase. By the structure of prison
strategies, p1(l) and p2(l) are not visited prior to k. By NEWT, the cyclic
phase consists of strict best-replying. Therefore, e[p1(l)] = e[p2(l)] = 0, in
contradiction with NEWT.
It remains to be shown that equilibrium paths contain no periods, in

which exactly one player behaves non-myopically. The only symmetric 2× 2
game for which this is possible is the PD. Assume that there exists at least
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one period, in which exactly one player plays C (we have already shown that
there can be no periods, in which both players play C).
First, observe that each player must play C at least once per cycle. Oth-

erwise, there is at least one player who never plays C past a certain period.
Therefore, there are a player j and a period k, such that akj = C and a

l
−j = D

for every l ≥ k. By the payoff structure of PD, akj 6= BRj[p−j(k)], in contra-
diction to NEWT.
Now, consider the earliest period k, in which exactly one player, say player

1, plays C. We have shown that there must exist a period l > k, such that
al1 = D and al2 = C. By Lemma 1, k already belongs to the cyclic phase, in
which players adhere to best-replying. But by NEWT, e[p1(l)] > 0. However,
by the structure of prison strategies, p1(l) is never visited prior to k, which
means that e[p1(l)] = 0, a contradiction.

Thus, non-myopic behavior in PD, Chicken or Battle-of-the-sexes can-
not be sustained in NEWT with prison trigger strategies. Moreover, only
sparse miscoordination can be sustained in coordination games with a Pareto-
dominant outcome. This result illustrates the strength of the requirement
that equilibrium strategies carry out both the best-replying and the support-
ing T-tests. Prison strategies are usually too tightly structured for this joint
task.
This section has explored two subclasses of trigger strategies - “grim” and

“prison” strategies. The former is totally unforgiving, whereas the latter is
totally forgiving. The restrictiveness of both schemes largely derives from the
fact that the duration of punishment is independent of the deviant player’s
behavior during the punishment phase. This property makes it optimal for
the player to behave myopically when he is being punished for a previous
T-test. As demonstrated by Figure 2 (see s2), the ability to condition on
players’ behavior during a punishment phase can be important for sustaining
cooperation in a game such as PD. I do not know how the results in this
section extend to arbitrary trigger strategies.

5 A Folk Theorem
The results gathered so far naturally raise the question of whether a folk
theorem holds under NEWT. The answer turns out to be affirmative for
arbitrary repeated 2× 2 (possibly asymmetric) games:
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Theorem 4 Every individually rational payoff profile in a repeated 2 × 2
game with discounting can be approximated by some NEWT, as the players’
discount factor tends to 1.

Here is the basic idea behind the construction for repeated Chicken, for
example. The trick is to use the states in one of player 1’s punishment
phases, say, to execute the T-tests against player 2’s strategy. (the output
of punishment states can be “dove” as well as “hawk”, but of course there
must be sufficiently many “hawk”-states amongst them, in order for the
punishment to be effective). In contrast, the states in player 2’s strategy that
carry out the T-tests against player 1’s strategy are “preliminary” states that
are never revisited. Along the pre-cyclic phase, player 1 runs his required
T-tests only after player 2 finished running his.
Because the game of Chicken satisfies the property that a = br[br(a)]

for every a ∈ {Hawk,Dove}, the punishment and preliminary states can be
endowed with constant transitions. This property is not satisfied by PD, for
example, which makes the construction for PD is more elaborate.
This construction is made possible by an important property of non-

zero-sum 2 × 2 games: (a∗j , br−j(a∗j)) is a NE in the stage game, where a∗j
is the action that “minimaxes” player −j. Therefore, whenever player j
“minimaxes” player −j and the latter responds myopically, no further T-
tests are required. This is the very property that allows trigger strategies to
generate an SPE folk theorem in 2×2 games. I do not know whether the folk
theorem would extend to larger games, which generally lack this property.

6 Games with Non-Simultaneous Moves
Although Definition 1 is stated for repeated games with simultaneous moves,
the basic idea underlying NEWT is extendible to a broader class of infinite-
horizon games, including non-simultaneous moves or non-time-separable pref-
erences. For example, the notion of myopic behavior is meaningless in bar-
gaining interactions, which usually do not involve periodic flow of payoffs.
Nevertheless, the idea of testing threats that affect optimal response is equally
pertinent to bargaining interactions.
Rather than presenting a “complete” generalization of NEWT, let us

study a special case. Consider an infinite-horizon, multi-period two-person
game. In each period t = 0, 1, 2, ..., player 1 moves first and player 2 moves
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second. Each player j at his turn faces an action set Aj of size two. Prefer-
ences are stationary, but they need not be time-separable. Further extensions
(number of players, number of actions, preferences with history-dependent
evaluation of continuation paths) are straightforward.
Let us continue to represent player j’s pure strategy by a finite automa-

ton (Qj, q0j , fj, τ j), with the convention that q
0
j is the player’s state at the

beginning of the game and τ j carries him to the next state, given the cur-
rent state q and player −j’s latest action. In particular, p2(0) is not q02,
but τ2(q02, a

0
1). By the stationarity of preferences, player −j’s evaluation of

continuation paths depends only on the current state of sj. Thus, there is a
well-defined BR function. Using a slightly fussier notation than in Section
2, let BR−j(sj | q) stand for the set of actions prescribed for player −j by
best-replying to sj, conditional on player j being in state q (again, assume
for simplicity that BR−j(sj | q) is a singleton).
For every q ∈ Q in sj = (Q, q0, f, τ ), define rq(sj) = (Q, q0, f, τ 0), which

is identical to sj, except that τ 0(q, a) = τ(q, BR−j(sj | q)) for every a ∈ A−j.
The automaton rq(s) is a simplification of s. According to s, the best-reply
action against q leads to a certain continuation. According to rq(s), this is
the continuation regardless of player j’s action against q. When τ(q, ·) is
constant, rq(s) = s.

Definition 4 (s1, s2) is a NEWT if for every player j = 1, 2:

1. akj = BRj[s−j | p−j(k)] for every sufficiently large period k along
z(s1, s2).

2. e(q) > 0 if and only if BRj(s−j | q) 6= BRj [rq(s−j) | q], for every state
q ∈ Q−j that is visited along z(s1, s2).

The modified second condition says that if a ∈ A is the best-reply action
against q only because of the perceived threat to punish −a, then the player
must test the threat first, by playing −a against q. In repeated games with
discounting, this is equivalent to Definition 1. The remainder of this section
applies this modified definition of NEWT to a couple of games.
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6.1 The Sequential-Move Prisoner’s Dilemma

In Section 4, we saw that mutual cooperation in repeated PD cannot be
sustained in NEWT with prison strategies. Let us consider a sequential-move
version of the PD, in which player 1 (2) is the stage-game leader (follower).
The following profile of prison strategies is a NEWT:

 b1: 

b2: 

D C D 

D C D 

               D  

   D      C 

 
   

C 

D 

  C  C 

  Player 1:         D         C         D         C         D         C         C         D         ... 
Player 2:               D           D        D          C          D        D        C       ...     

Figure 5

Where lies the difference between the simultaneous- and sequential-move
cases? Observe that at period 4, both players play C, which is a non-myopic
action and therefore requires T-tests. However, player 1’s C is a best-reply
action against p2(3), not p2(4). This means that player 1’s (2’s) T-test is
supposed to justify his cooperativeness against player 2’s (1’s) defective (co-
operative) behavior. This asymmetry does not hold in the simultaneous-move
case. This example illustrates that the class of NEWT in a repeated game is
sensitive to whether moves are simultaneous or sequential.

6.2 A Repeated Ultimatum Game

Consider an infinite repetition (with discounting) of the following extensive-
form game:
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1 

2 2 

H  L 

Y Y N N 

1-h 
h 

ε 
0 

1-l 
l 

0 
0 

1 > h > l >> ε > 0 

Figure 6

This is a two-action version of the Ultimatum Game (H and L stand for
a generous offer and a mean offer, whereas Y and N stand for accepting and
rejecting an offer). The only non-standard feature of the payoff structure is
the proposer’s small positive payoff when the responder declines a generous
offer, which I introduce as a tie-breaker. Given that the proposer’s offer is
rejected, he is slightly better off being generous.
The repeated game has a trivial NEWT, in which the proposer always

makes a mean offer, which the responder always accepts. In this subsection,
we will study play paths, in which player 1 keeps making a generous offer
that is accepted by player 2, from some period k∗ onwards. As in Section
3.2, let us restrict attention to strategies that display constructive reciprocity
(the minimax actions are a∗1 = L and a∗2 = N). This restriction entails no
loss of generality under NE. Whenever persistently generous behavior is NE-
sustained at all, it is sustainable by NE with CR strategies. The following
result demonstrates that under NEWT, restricting attention to CR strategies
carries strong implications:

Theorem 5 Suppose that (s1, s2) is a NEWT with CR strategies, such that
ak1 = H and ak2 = Y for every period k > k∗ along z(s1, s2). Let the players’
discount factor tend to 1. Then, h < 2+l

3
.
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Thus, the combination of NEWT and CR strategies in the repeated Ulti-
matum game carries a strong payoff restriction. In order for constructive
reciprocity to be consistent with sustained generosity, the gap between h and
l cannot be too large. What drives this result is that player 2 does not need
to back-up his cyclic behavior with T-tests (contrary to repeated PD, for
example), because Y = br2(H).

s1: 

s2: 

L L H 

    Y      

 N 

Y N  H  
 L 

Player 1:    L         L         L         H         H      ... 
Player 2:        Y          N         Y         Y        Y       ...  

Y 

 N 

Figure 7

Figure 7 represents a profile of CR strategies, which constitutes a NEWT
as long as h < 1+l

2
. The play pattern is as follows: player 1 initially makes

mean offers; he gets away with the first but encounters rejection of the second;
then, he makes one last mean offer before switching to generous behavior.
The proposer’s switch to generous offers following an acceptance, rather than
a rejection of a mean offer, is somewhat counter-intuitive. The reason is that
the “lesson” the proposer draws from his T-tests is that he cannot get away
with two consecutive mean offers, but he can get away with one.

7 Discussion

The concept of NEWT is based on a new notion of “credible threats” in
infinite-horizon games: threats are “credible” if they were actually tested and
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realized in the past. The particular way in which this idea is incorporated
into the definition of NEWT raises questions of interpretation, which I would
now like to discuss.

7.1 Interpreting the Equilibrium Condition

Following the convention of Aumann (1987) and Rubinstein (1991), player
j’s equilibrium strategy sj is interpreted as a belief held by his opponent
−j. However, when the motivation for threat testing is genuine strategic
uncertainty, it seems implausible to interpret sj as the belief that player −j
holds at the beginning of the game. Instead, equilibrium strategies should
be interpreted as the beliefs that players come to hold by the time they
enter the cyclic phase. The assumption underlying NEWT is that in
order for the players to have arrived at those beliefs, they must have tested
the relevant threats in the pre-cyclic phase. However, the concept makes no
explicit presumption concerning the players’ beliefs at the beginning of the
game.
Throughout the paper, there has been no attempt to rationalize the model

of behavior underlying NEWT. In this respect, the paper shares a simi-
lar approach with recent works in the bounded rationality literature, which
formulate equilibrium concepts on the basis of procedurally rational behav-
ior: McKelvey and Palfrey (1995), Osborne and Rubinstein (1998), Spiegler
(2000), Eliaz (2001), Jehiel (2001), among others.
Of course, it is of interest to know whether there are conditions, in which

NEWT is consistent with standard Bayesian rationality. For example, con-
sider an arbitrarily patient, Bayesian rational player, who faces a “forgiving”
strategy (i.e., all the punishments are reversible, as in prison strategies). For
each of the opponent’s threats, he places a positive probability on the event
that the threat does not exist. Such a player will conform to our model. (such
that e(q) ≤ 1 for every q.) In this case, we can say that NEWT captures the
last stage of a process of learning to play a repeated-game NE, in addition
to the NE itself.
T-tests cannot be universally rationalized. E.g., a Bayesian rational

player will not want to test a “grim” threat if he is sufficiently patient. In
general, testing irreversible punishments is harder to rationalize. However,
irreversible punishments are less interesting to begin with in our framework,
as Remark 1 illustrates. Long-run non-myopic behavior, which is sustained
by an irreversible punishment, will not survive the T-tests and is therefore
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inconsistent with NEWT.
This entire problem of interpreting equilibrium strategies vanishes when

T-tests are driven by self-control or justifiability considerations, rather than
by strategic uncertainty. In this case, the equilibrium condition of NEWT is
interpreted in the same way as in NE. Players have perfect forecasts of each
other’s strategy, but their individual decision procedure is different - rather
than choosing a course of action that maximizes utility, they choose a course
of action they can justify, for example.5

7.2 The Finite Automata Representation

The threat testing procedure is formalized using finite automata representa-
tion of repeated-game strategies. Testing a threat corresponds to traveling
through the transition τ [q,−BR(q)] from the state q. Two histories in which
the opponent is in the same state (different states) are (not) equivalent for
threat-testing purposes.
This is the most conservative way of distinguishing between different

threats (see Kalai and Stanford (1988)). Due to the stationarity of the in-
finitely repeated game, the set of available continuation paths for player j,
given s−j, is completely determined by the state in which s−j is. Two histo-
ries in which s−j is in the same state are not only payoff-equivalent for player
j, but they are also equivalent in terms of his set of feasible continuation
paths.
The converse is not always true because the finite automata represen-

tation may contain “redundancies”. For example, the following automaton
represents the same strategy as Figure 1: Q = {q1, q2, r}, f(q1) = f(q2) = C,
f(r) = D, τ (q1, D) = τ (q2, D) = r, τ(q1, C) = q2, τ(q2, C) = q1, τ (r, C) = r
and τ(r,D) = q1. Thus, one of the two C-states in this representation is
redundant. Nevertheless, NEWT treats the two threats associated with the
two C-states as two different threats, which require at least one T-test each.
Therefore, NEWT the minimal overall number of T-tests that are required
against this representation is higher than against the representation given by
Figure 1.
It follows that the finite automata representation is a non-trivial com-

ponent of the definition of NEWT - different representations of the same

5It could be argued that justifiability is not a decision procedure, but a particular
preference. Under this interpretation, NEWT is a reduced-form model. The reader is
referred to Spiegler (2000) for an elaborate discussion.
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strategies give rise to different equilibrium behavior. However, none of
the results in this paper depends on this feature.
It is interesting to compare this paper to the literature on complexity

considerations in repeated games, pioneered by Rubinstein (1986) and Ney-
man (1985), which also relies heavily on the finite automata formalism. (al-
though the present paper employs the formalism as convenient language for
expressing the idea of systematic threat testing, not to capture complexity
considerations.)
Rubinstein (1986) and Abreu and Rubinstein (1988) study NE in repeated

games, in which players also prefer a smaller number of states in their au-
tomaton. Banks and Sundaram (1990) assume that players also prefer a
smaller number of transitions. An immediate consequence of these assump-
tions is that in equilibrium, all states are visited (in Banks and Sundaram
(1990), all transitions are traveled as well). These properties are also sat-
isfied in NEWT, whenever equilibrium strategies satisfy that every state is
reachable from every other state.
The crucial property that distinguishes NEWT from these models is the

following: if BR(q) 6= br[f(q)] and q is visited in z(s1, s2), then both BR(q)
and br[f(q)] are played against q along z(s1, s2). In other words, there can-
not be one-to-one correspondence between the two players’ actions in any
NEWT that contains non-myopic behavior. In contrast, such one-to-one
correspondence is a central property of the above models.

7.3 Other Testing Procedures

T-tests are not the only way of checking contingencies in repeated games.
E.g., even when a player in the repeated PD expects his opponent’s strategy
to be “always defect”, he may occasionally try cooperative behavior, in the
hope that this will trigger reciprocal cooperation by the opponent. This type
of experimentation is ruled out by NEWT. Allowing for arbitrary experimen-
tation in the pre-cyclic phase, in addition to T-tests, can be achieved simply
by removing the “only if” in Condition 2 of Definition 1.
However, there is a difference in principle between T-tests and such al-

ternative procedures. The objective of T-tests is to verify the contingencies
that are postulated by the player’s belief, and those are finite in number. in
contrast, the latter type of experiments is designed to discover new contingen-
cies that are not postulated by the belief, and those are infinite in number.
This is analogous to the difference between sample-error tests (t-tests) and
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specification-error tests in classical statistical inference - the former is nor-
mally perceived as a more rudimentary and standard procedure. Clearly, the
classical statistician sometimes carries out both procedures. Nevertheless, if
we wanted to describe her normal behavior, focusing on t-tests and ignoring
specification-error tests would be a good “first approximation”.
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9 Appendix: Proofs

9.1 Theorem 1

Let us first show that kC ≥ 6. Since C 6= br(C), NEWT implies that for both
j = 1, 2, C = BRj [p−j(kC)] and there exists at least one period kj < kC ,
such that pj(kj) = pj(kC) and a

kj
−j = D. Moreover, kj 6= kC − 1; otherwise,

the payoff structure of PD implies BR−j[pj(kC)] = D, a contradiction. Also,
since C 6= br(D), NEWT implies that for both j = 1, 2, C = BRj[p−j(k−j)]
and there exists at least one period lj < kj, such that pj(lj) = pj(kj) and
a
lj
−j = D. It follows that k

C ≥ 5.
Suppose that kC = 5. Then, the play path must be as follows (assume

k1 < k2, without loss of generality):

Player 1: D C D D C C ...
Player 2: D D C D C C ...

Observe that τ1[p1(1),D] = p1(kC). Therefore, BR2[p1(1)] = D, a con-
tradiction.
Let us now turn to comparative statics. The reader can verify that for

any PD payoffs, there exists M ≥ 1, such that the following strategy profile
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constitutes a NEWT for every N ≥ M (the rectangle represents M − 1
consecutive D-states with constant transitions):

 D  D C 
 C  

D D 

      C  

 D  

 C  

C 

     D  

 D   

   C  
D  (M -1 times) 

D  (M -1 times) 

Figure 8

It remains to be shown that the build-up phase can never be shorter
than the one given in Figure 8. Let l∗ be the latest period l for which
al1 6= al2, in some NEWT with minimal cooperation build-up. As we have
already observed, l∗ < kC − 1. Suppose, without loss of generality, that
al
∗
1 = C. Then, p1(l

∗) must be visited in the cycle. Otherwise, there would
be a NEWT with a shorter build-up phase, which differs from the NEWT in
question only in that τ j[pj(l∗− 1), al∗−1−j ] = pj(k

C) for every j = 1, 2, thereby
contradicting the minimality assumption. Now, in order for BR2[p1(l∗)] = C
to hold, it must be that kC − l∗ − 1 ≥ M , by the definition of M . We
have already shown that l∗ ≥ 4 (while proving that kC ≥ 6). It follows that
kC ≥M + 5. Finally, it is easy to verify that M is increasing in the players’
discount factor and decreasing in u(C,C).

9.2 Lemma 1

Suppose that akj 6= brj(ak−j) for both j = 1, 2. For each j ∈ {1, 2}, there is
a finite number Nj of states q ∈ Qj satisfying fj(q) = akj and BR−j(q) 6=
br−j(akj ), that are visited along z(s1, s2). Moreover, the structure of prison
strategies implies that these states are visited in a fixed order q1, ..., qNj , q1, ...,
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such that q(n+1)modNj is visited only after BR−j(qnmodNj ) is played against
qnmodNj . Therefore, there must exist a period k0 > k such that pj(k0) =
pj(k) for both j ∈ {1, 2}, which means that k belongs to the cyclic phase of
z(s1, s2).
Now, suppose that akj 6= brj(a

k
−j) for exactly one player j. The only

symmetric 2× 2 game, for which this is possible, is the PD. Without loss of
generality, let ak1 = C and a

k
2 = D. By NEWT, a

k
1 = BR1[p2(k)]. Clearly, s1

contains a finite number of C-states. Similarly, s2 contains a finite number
M of D-states q ∈ Q2 satisfying BR2(q) = C. By the structure of prison
strategies, these D-states are visited in a fixed order q1, ..., qM , q1, ..., such
that q(n+1)modM is visited only after BR−j(qnmodM) = C is played against
qnmodM . Therefore, there must exist a period k0 > k such that pj(k0) = pj(k)
for both j ∈ {1, 2} - i.e., k belongs to the cyclic phase of z(s1, s2).

9.3 Theorem 4

Consider a cycle of actions that yields individually rational payoffs. Con-
struct a strategy profile (s1, s2), which induces this cycle in its cyclic phase.
Let (r11, ..., r

m
1 ) and (r

1
2, ..., r

n
2 ) be the states in s1 and s2, respectively, that

are visited in the cyclic phase and satisfy BR−j(r) 6= br−j[fj(r)]. The states
are enumerated according to their order of appearance in the cycle. Denote
by a∗j the action for player j that minimaxes player −j. Along z(s1, s2), let
k be an arbitrarily large period in the cyclic phase, for which p2(k) = r12.
Denote p1(k) = p∗.
For simplicity, let us first consider 2×2 games, for which (a1, br2(a1)) is a

stage-game NE for every action a1 (Chicken and Battle-of-the-sexes fall into
this category).
Player 2’s strategy s2 is constructed as follows:

1. For every k = 1, ..., n, τ2[rk2 ,−BR1(rk2)] begins a sequence ofNk constant-
transition states, whose output is a∗2. This sequence in turn leads to the
state rk+1modn2 . The numbers (Nk)k=1,...,n are chosen to be big enough,
such that BR1(rk2) 6= br1[f2(rk2)].

2. f2(q02) = br2[f1(r
1
1)] and τ 2(q

0
2, ·) is constant.

3. q02 leads to a sequence of M
1 constant-transition states, whose output

is br2(a∗1), where M
1 is arbitrarily large.
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4. This sequence of states leads to a constant-transition state p12, such
that f2(p12) = br2[f1(r

2
1)].

5. p12 leads to a sequence of M
2 constant-transition states, whose output

is br2(a∗1), where M
2 is arbitrarily large.

6. This construction proceeds along the same lines, until we hit pm2 ≡ r12.

Player 1’s strategy s1 is constructed as follows:

1. q01 = r
1
1.

2. For every k = 1, ...,m, τ1[rk1 ,−BR2(rk1)] begins a sequence of Mk

constant-transition states, whose output is a∗1, where M
k is as spec-

ified in the construction of player 2’s strategy). Furthermore:

(a) For every k = 1, ...,m− 1, the kth sequence leads to rk+11 .

(b) The mth sequence leads to n concatenated sequences of constant-
transition states. For every h = 1, ..., n, the hth sequence consists
of one state, whose output is br1[f2(rk2)], followed by N

h states,
whose output is br1(a∗2). The n

th sequence leads to p∗.

It is straightforward to verify that this strategy profile constitutes a
NEWT. The cycle begins in the earliest period k, for which p1(k) = p∗

and p2(k) = r12.
A modification is needed whenever fj(rkj ) 6= brj[br−j(fj(rkj ))] for some rkj

(e.g., when fj(rkj ) = C in the PD). By the construction, there is a unique
period l in the pre-cyclic phase, for which pj(l) = rkj . Also, by construction,
f−j[p−j(l)] = br−j(rkj ) and τ−j[p−j(l), ·] is constant.
The modification of s−j is as follows. Instead of τ−j [p−j(l), fj(rkj )] =

τ−j [p−j(l), fj(rkj )], let τ−j [p−j(l), fj(r
k
j )] begin a sequence of K constant-

transition states, whose output is a∗2. This sequence leads back to p−j(l)
and K has to be sufficiently high to ensure that fj(rkj ) 6= BRj [p−j(l)]. The
modification of sj is as follows. By the construction, rkj has a unique state q
that is not visited in the cycle and satisfies τ(q, ·) = rkj . Between q and rkj ,
insert K constant-transition states, whose output is brj(a∗−j), where K is as
defined above. it is straightforward to verify that this modification results in
a NEWT.
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9.4 Theorem 5

By constructive reciprocity, if player 2 always plays Y against an H-state,
he guarantees the maximal continuation payoff that is feasible for him in the
game. Therefore, e(q0) = 0 for every H-state q0 ∈ Q1. Thus, k∗ is the earliest
period, in which player 1 plays H.
On the other hand, τ 2(q,H) = Y and BR1[s2 | q] = H for every state

q ∈ Q2 that is visited in the cycle (at least from period k∗ + 1 onwards).
Therefore, BR1[rp(s2) | q] = L and so, e(q) > 0 and a11 = L. By constructive
reciprocity, τ2(q, L) = N . It follows that there exists a period k < k∗, such
that p2(k− 1) = q, ak1 = L and ak2 = N . By NEWT, ak2 = BR[s1 | p1(k)] and
e[p1(k)] > 0. Therefore, a12 = Y , a21 = L, and by constructive reciprocity,
a22 = N .
There are two cases to consider:

1. a31 = L. Suppose that a
3
2 = N . Then, BR1(s2 | p) = L and BR1[rp(s2) |

p] = H. NEWT requires that e(p) > 0, which is not satisfied along the
play path, a contradiction. It follows that a32 = Y . By constructive
reciprocity and since players are arbitrarily patient, player 1 can guar-
antee a discounted payoff of 1− h against p2(3), which is the same as
the payoff he can guarantee against p2(1). Therefore, to ensure that
BR(s2 | q) = H for any Y -state q ∈ Q2 that is visited in the cyclic
phase, stage-game payoffs must satisfy h < 1+l

2
.

2. a31 = H. Then, k∗ = 3 and so, p2(1) must be visited in the cyclic
phase. Denote p2(2) = p. Suppose that BR1(s2 | p) = H. Since
BR1[rp(s2) | p] = L, NEWT requires that e(p) > 0, which is not
satisfied along the play path, a contradiction. Therefore, BR1(s2 |
p) = L. If f2[τ 2(p, L)] = Y , then by constructive reciprocity, player 1
can guarantee a higher payoff by playing L against p than by playing
H, thus contradicting the fact that L is the best-reply action against
p. It follows that f2[τ 2(p, L)] = N . To ensure that BR1[s1 | p2(1)] = H
and BR1[s2 | p2(2)] = L, stage-game payoffs must satisfy h < 2+l

3
.
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